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Abstract

Numerous computer vision problems such as stereo

depth estimation, object-class segmentation and fore-

ground/background segmentation can be formulated as per-

pixel image labeling tasks. Given one or many images as

input, the desired output of these methods is usually a spa-

tially smooth assignment of labels. The large amount of

such computer vision problems has lead to significant re-

search efforts, with the state of art moving from CRF-based

approaches to deep CNNs and more recently, hybrids of

the two. Although these approaches have significantly ad-

vanced the state of the art, the vast majority has solely

focused on improving quantitative results and are not de-

signed for low-compute scenarios. In this paper, we present

a new general framework for a variety of computer vision

labeling tasks, called HashMatch. Our approach is de-

signed to be both fully parallel, i.e. each pixel is indepen-

dently processed, and low-compute, with a model complex-

ity an order of magnitude less than existing CNN and CRF-

based approaches. We evaluate HashMatch extensively

on several problems such as disparity estimation, image

retrieval, feature approximation and background subtrac-

tion, for which HashMatch achieves high computational ef-

ficiency while producing high quality results.

1. Introduction

Since the groundbreaking work of Krizhevsky et al. [29],

deep learning is now the method of choice for a variety

of computer vision problems. Although significant efforts

have been undertaken to improve the performance of CNNs

on various labeling tasks, these models are still far from be-

ing computationally efficient. Most of the work on efficient

deep learning focuses on trying to compress deep models

without losing precision and accuracy [38, 20, 11]. For ex-

ample in [38], the authors train a deep architecture making

use of binary weights for both the input and the filters. In

∗Authors equally contributed to this work.

[20], the authors try to remove redundant connections and

force multiple neurons to share the same quantized weights.

Others like [22] attempt at designing more compact layers

that use a reduced number of parameters. Similar to [38],

methods proposed in [11, 12] try to binarize the full net-

work. However, these solutions still require many compu-

tational layers that involve multiple convolutions to infer

per-pixel labels. Although there is an improved efficiency

from the computational perspective, they suffer from ac-

cessing image patches stored in memory multiple times, and

hence these algorithms are both memory and computation-

ally bound.

Prior to the deep learning era, Conditional Random

Fields (CRFs) were used as one of the major tools for image

labeling problems. In their ‘simplest’ form, CRFs are com-

posed of a pairwise term, encouraging structural coherence

in the solution and a unary term, which is responsible for

modeling the compatibility between each data point/pixel

and a pre-defined set of labels. Machine learning is com-

monly used to predict this compatibility function. It is ac-

cepted that the more sophisticated the unary potential, the

better the results obtained after solving the CRF. As a con-

sequence, practitioners tend to use expensive feature repre-

sentations, e.g. HOG [13], SIFT [30] or even deep-learning

intermediate representations, followed by advanced classi-

fiers such as kernel-SVM [42]. Once the unary potential has

been estimated for each pixel, the actual CRF inference can

be performed. Unfortunately, solving multi-label CRFs is a

NP hard problem [7]. The high demand for fast and accurate

solvers resulted in significant research efforts in this space,

each offering different trade-offs in terms of compute and

closeness to the posterior captured by the CRF. It is worth

noting that it is possible to compute unary potentials and

solve the CRF at interactive rates (e.g. [10, 48]) but these

approaches still have some sequential steps and have large

model complexity.

In this paper, we propose to bridge this gap in the liter-

ature by introducing HashMatch, a generic and extremely

low-compute framework that has been designed from the

ground-up for parallel, i.e. pixel independent, processing.
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As demonstrated in this paper, the efficiency and parallel

nature of our approach allows us to achieve compelling re-

sults on a variety of computer vision problems, at speeds

never before demonstrated. For example, estimating dis-

parity or segmentation masks on 1.3 megapixel images at

1000 fps on high-end GPUs (e.g. NVIDIA Titan X) and at

200fps on VGA images on mobile architectures (e.g. Tegra

TX1) while also providing compelling results on multiple

computer vision tasks. Our main technical contributions are

two-fold. First we propose a binary embedding for classifi-

cation, regression and nearest neighbor tasks that is trained

with sparsity and anti-sparsity constraints. This allows eval-

uating a robust unary potential with only a few operations

per pixel. Second, we present a new inference scheme that

fully operates in parallel with complexity that is not a func-

tion of the size of the solution space. These technical contri-

butions are formulated in a mathematical framework whose

objective function is directly applicable to many different

computer vision problems.

2. Related Work

Binary Representations. The task of finding binary and

compact representations has been exhaustively studied in

the literature. This is usually known as hashing and the

problem is generally formulated as:

b = h(x) (1)

with x ∈ Rn, b a binary code in {0, 1}k, and h the hash-

ing function. h can be a linear projection, a spherical func-

tion, a kernel, a neural network, a non-parametric function,

etc. Here we focus on the family of linear hash functions

of the form h(x) = sign(xW), with W ∈ Rn×k, where

sign(x) returns 1 if x ≥ 0 and 0 otherwise. The most

popular data independent approach to generate those hash

function is called Locality-Sensitive Hashing (LSH) [23, 9].

These usually make use of random gaussian projections to

generate the hyperplanes W. Despite their simplicity, these

hashing schemes perform reasonably well in practice. For

an extensive review of LSH, we refer the reader to [51].

Data dependent hashing schemes have also been pro-

posed [19, 37, 8, 54, 21, 43, 56]. These methods are usu-

ally unsupervised and they try to design an objective func-

tion that preserves the similarities of the input signal in the

new binary space. Iterative Quantization (ITQ) [19] ob-

tains low dimensional codes by applying PCA to the data

and then find the optimal rotation that makes the codes as

close as possible in the binary space. [8] casts the hash-

ing problem to an auto-encoder formulation, however part

of the optimization resorts to enumerating all the possible

solutions, leading to very slow training procedures. In [37],

authors exploit sparsity to have a runtime that is cost inde-

pendent of the original signal dimensionality. However an

ℓ2-normalization of the signal is first performed, therefore

the overall running cost still depends on the input dimen-

sion. More recently, [52] uses an ensemble of fast decision

trees to model hash functions, however the method requires

a non-trivial aggregation step, adding compute.

Our work is very different from the ones in the literature.

Whereas most of the approaches focus on nearest neighbor

tasks, our framework is very flexible and can be used on

tasks ranging from classification to signal reconstruction.

Different from others [8, 19], we heavily exploit sparsity at

runtime and remove normalization steps such as in [37].

Inference in Graphical Models. Estimating the Maxi-

mum A Posteriori (MAP) of a multi-label Conditional Ran-

dom Field (CRF) is a well known NP complete problem

[7]. Given the successful use of CRFs for advancing the

state of the art, performing (approximate) inference over

those models has received much attention. The major dif-

ference among all the solvers is whether they are determin-

istic or stochastic. Stochastic methods include the family of

Markov Chain Monte-Carlo methods, which have exponen-

tial convergence rate in the worst case but can provide exact

results. This family of methods is regarded as too compute

intensive for real-time applications that make use of ‘large’

CRFs. Besides stochastic techniques resides a wide array

of deterministic methods. Successful techniques include

Move-Making algorithms [7], Belief Propagation [17], It-

erated Conditional Modes [3], Tree Reweighted Message

Passing [27], Quadratic Pseudo-Boolean Optimization [41]

and Mean-Field [28]. Each of these techniques comes with

various trade-offs in terms of quality of the approximation

and speed.

It is worth noting that when the data term is strong and

high-speed inference is required (e.g. depth estimation at

VGA resolution), global optimization of the posterior is

usually dropped in favor of local optimization [40, 4, 32].

Thanks to our learned binary representation we can pro-

vide a very strong data term. This low entropy data term

allows us to design and use a new parallel global infer-

ence method which reaches high quality solutions for 1.3
Megapixel images in less than one millisecond on GPUs.

3. The HashMatch Framework

Our framework is based on a pairwise-CRF that can be

expressed using the following probabilistic factorization:

P (Y |D) =
1

Z(D)
e−E(Y |D) (2)

E(Y |D) =
∑

i

ψu(li) +
∑

i

∑

j∈Ni

ψp(li, lj), (3)
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The data term ψu(li) models how likely a node in the

graph (usually a pixel) belongs to a particular class li (e.g.

‘foreground’). The exact implementation of ψu(li) depends

on the task at hand. For instance, for finding the nearest

neighbor between image patches, labels li correspond to

vectors (u, v) which define the displacements in the image

directions. Then

ψu(li) = |h(xi)− h(xi+li)| (4)

measures the compatibility of two image patches x centered

at 2D pixel location i and i + li. The function h(x) =
sign(xW) is a binary feature, which allows us to compute

ψu(li) highly efficiently via the Hamming distance in (4).

For any other classification or regression problem we define

ψu as

ψu(li) = − log(g(li, h(xi))) (5)

where g is a learned classifier or regressor that evaluates

the likelihood of label li given the binary code h(xi) of

an image patch xi. The smoothness cost is defined as

ψp(xi = li, xj = lj) = max(τ, |li − lj |) and it encour-

ages that neighboring pixels i and j are assigned to similar

labels, where τ is a truncation threshold.

Our key contribution is a novel method to compute h(x)
and g(·) that captures the essential information in the data

and it is detailed in the remainder of the section.

3.1. HashCodes Learning

We now detail our proposed approach to train a function

h that maps a signal x ∈ R
n to a binary space b = h(x) =

sign(xW) ∈ {0, 1}k. This binary representation b, is then

used to learn a function g(l,b) that performs any given task

y ∈ R
d. It is important to note that y can correspond to

tasks as diverse as multi-label classification and structured

regression. In particular, one can define y = x for nearest-

neighbor search. In order to keep the computational cost as

low as possible, we consider a linear model for each entry

yl, i.e. yl = g(l,b) = b⊤zl.

More formally, we learn a set of hyperplanes W ∈ R
n×k

and a task function Z ∈ R
k×d that minimizes a loss L:

min
W,Z

L( sign(XW) Z,Y ) + Γ(W) + Ω(Z) (6)

where X ∈ R
m×n and Y ∈ R

m×d are matrices whose i-
th row corresponds respectively to xi and yi. The terms

Γ(W) and Ω(Z) are suitable regularizers encouraging de-

sired structures on the two predictors.

The model y = Z⊤sign(W⊤x), can be interpreted as a

neural network with one hidden layer and with the operator

sign(·) as non-linearity (in contrast to a sigmoid or ReLu

[34]). In particular, when Y = X, the model becomes sim-

ilar to an autoencoder with internal binary representation

(e.g. [8]). However, the optimization of Eq. (6) cannot be

performed using first-order methods (e.g. backpropagation)

because sign(XW) is a piece-wise constant function (and

therefore the subgradient with respect to W is zero almost

everywhere). We circumvent this issue by decoupling the

task y from the binary mapping h(x). To do so we intro-

duce an additional variable B = sign(XW) and then relax

the equality constraint by means of a dissimilarity measure

D(XW,B) that will be minimized. This leads to the prob-

lem

min
W,Z,B

L(BZ,Y) + Γ(W) + Ω(Z) + γ D(XW,B)

s.t. ‖B‖∞ ≤ µ

(7)

where ‖B‖∞ = maxij |Bij | denotes the ℓ∞ (or max) norm

of B and µ > 0 a scalar hyperparameter. The constraint

‖B‖∞ ≤ µ is introduced to encourage so-called anti-sparse

solutions, such that the minimizer B∗ of Eq. (7) would

have all entries B∗ij = ±µ. The concept of anti-sparsity

was originally introduced in the signal processing literature

where it was observed that imposing constraints based on

the max-norm would induce ‘binary’ solutions. We refer the

reader to [33, 18, 25, 53, 44] for an in-depth discussion on

the anti-sparse properties of max-norm regularization (and

constraints). The idea of introducing a variable B with bi-

nary entries is akin to the one proposed in [8]. However in

such work the authors imposed the constraint B ∈ {−1, 1}
in the optimization, leading to an NP-hard problem. On the

other hand, the max-norm constraint ball is a convex set,

and in the following we discuss an efficient optimization

algorithm to find B in practice.

Interestingly, when B is a binary matrix with entries

equal to ±µ, the problem of learning a linear predictor

W such that 1
µ
B ∼ sign(XW) corresponds to a stan-

dard multi-label (or multi-task) binary classification prob-

lem, with each column of B representing a different binary

task. Therefore a natural choice for the dissimilarity mea-

sure D(XW,B) is a loss function used for classification

problems such as the logistic, hinge, least-squares etc.

3.2. Optimization

The optimization problem described by Eq. (7) is not

jointly convex in W,Z,B but, for convex loss functions

L,D and regularizers Γ,Ω the objective functional is

convex separately in each variable. A natural strategy

to address this problem is therefore to perform either

alternated minimization [47, 39] or block coordinate

descent [5]. Below we detail how we propose to perform

the minimization of Eq. (7) by independently optimizing

W,B and Z.

Optimizing W. We propose to use the regularizer Γ(W) =
λ|W|1 in order to induce sparse solutions. In particular, in
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our experiments λ is chosen so that the corresponding so-

lution W∗ has at most s << n non-zero entries in each

column. Indeed, this allows to compute a code h(x) =
sign(W⊤

∗ x) in O(sk) operations rather than O(nk). When

the dissimilarity measure D is smooth, one can employ

a standard proximal forward-backward splitting method to

find the best W for fixed B and Z. The algorithm consists

of producing a sequence of updates defined by

Wt+1 = Proxσ1λ|·|1(Wt − σ1X
⊤γ∇D(XWt,B)) (8)

where Proxσ1λ|·|1 denotes the proximal operator of σ1λ| · |1
(see [2]). For the case of the ℓ1 norm, the proximal

operator is well-known to correspond to the entry-wise

soft-thresholding [2]: for each scalar w, the soft thresh-

olding is such that Proxσ1λ|·|1(w) = 0 if |w| ≤ σ1λ and

Proxσ1λ|·|1(w) = w − sign(w)σ1λ otherwise. For a

suitable choice of step size σ1 (by either line search or

depending on the Lipschitz constant of the gradient of D),

iterating Eq. (8) is guaranteed to converge to the solution

W∗ with the value of the objective functional decreasing at

a rate of O(1/t) [2]. Following [57] we also use an early

stopping criterion to fix the desired number of variables

with the highest absolute values for each column of W.

Optimizing B. If L is smooth, one can again adopt the

proximal forward-backward splitting approach to minimize

Eq. (7) w.r.t. B (for fixed W and Z) obtaining the updates

B̃t+1 = Bt − σ2
(
∇L(BtZ,Y)Z⊤ + γ∇D(XW,Bt)

)

Bt+1 = Prox{‖·‖∞≤µ} (B̃t+1) (9)

To compute the proximal operator, we make use of

the Moreau decomposition, stating that for any func-

tion φ, Proxφ(B) = B − Proxφ∗(B), with φ∗ denot-

ing the Fenchel’s conjugate of φ (defined as φ∗(B) =
supC∈Rm×k tr(B⊤C) − φ(C)). In our case, φ can be in-

terpreted as the indicator function of the max-norm ball of

radius µ (namely the function that is zero when ‖B‖∞ ≤ µ
and +∞ otherwise). It is straightforward to show that the

corresponding Fenchel’s conjugate is φ∗(B) = µ|B|1. As

a consequence we have

Bt+1 = B̃t+1 − Proxµ|·|1(B̃t+1) (10)

with Proxµ|·|1 the entry-wise soft-thresholding operator

introduced for the optimization of W. We again obtain a

convergence rate in the order of O(1/t) [2].

Optimizing Z. We consider the Frobenius norm regularizer

Ω(Z) = η‖Z‖2 to avoid overfitting. This problem can be

solved by standard gradient descent updates

Zt+1 = Zt − σ3
(
B⊤∇L(BZ,Y) + ηZt

)
(11)

which is known to converge for a suitable choice of step

η. Convergence rates of O(1/t) are guaranteed also in

this case [2]. Faster rates can be achieved adding further

hypotheses on the conditioning of the loss L [6]. More-

over, if we consider L(BZ,Y) = ‖BZ − Y‖2, we can

compute the the solution to the problem in closed form as

Z∗ = (B⊤B+ηI)−1B⊤Y, with I the k×k identity matrix.

Convergence Rates of Block Coordinate Descent. Block

coordinate descent methods consists of iterating across the

steps at Eq. (8,9,11) by optimizing over one variable at the

time while keeping the other two variables fixed. In gen-

eral, it is challenging to prove convergence of the iterations

to a stationary point (e.g. local minima or saddles) let alone

prove rates on how fast such convergence can be guaran-

teed. However, for the choice of loss functions and regu-

larizers considered in this work, the proposed approach be-

longs to the family of Proximal Alternating Linearized Min-

imization (PALM) optimization methods [5] whose conver-

gence properties have been recently studied. As a corollary

to Theorem 1 and Remark 6 in [5] we have the following

Theorem 1 (Convergence of PALM). With the notation of

Eq. (7), let L and D satisfy the hypotheses in [5] (Thm.1),

in particular, they are differentiable, have Lipschitz con-

tinuous gradient with associated Lipschitz constants LL

and LD respectively. Consider the iterative sequence of

(Wt,Bt,Zt)
∞
t=0 obtained by updating each variable iter-

atively according to respectively Eq. (8,9,11) with step size

respectively σ1 ≤ (γLD‖X‖op)
−1, σ2 ≤ (ηLL + γLD)

−1,

σ3 ≤ (µmLL + η)−1 (with m defined in Thm 3.1 of [5],

‖X‖op denoting the operator norm of X , namely the max-

imum singular value of X). Then there exists a stationary

point W∗,B∗,Z∗ for the functional at Eq. (7) such that

‖(Wt,Bt,Zt)− (W∗,B∗,Z∗)‖ = O(1/t) (12)

The above theorem states that for specific choices of

descent steps σ1, σ2, σ3, one can expect convergence to a

stationary point at a sublinear rate of the order of O(1/t).

Choice of L and D. The relaxed problem described in Eq.

(7) and the optimization approach described apply to any

choice of convex smooth function L and dissimilarity mea-

sure D. In the experiments reported in this work we adopted

the least squares loss function L(BZ,Y) = ‖BZ − Y‖2

and D(WX,B) = ‖WX − B‖2 for which it is easy to

recover the Lipschitz constant of the gradient to derive the

descent step sizes σ1, σ2, σ3 in Thm.1. This choice was also

motivated by the fact that least-squares is the standard loss

function for regression and reconstruction problems (hence

a natural choice for L) but also often used in classification

settings [55] (hence a viable choice for the dissimilarity D).

In the supplementary material we report the pseudocode for
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the optimization strategy described in for this choice of loss

and dissimilarity.

3.3. Parallel Inference

Infering the posterior probability, and a fortiori the MAP

(Maximum a Posteriori) of P (Y |D), is in general very hard

as it requires solving for a very complex series of integrals

over all the variables x ∈ X . To approximate this complex

distribution, we resort to using variational approximation.

More precisely, we are aiming at finding a distribution Q
that is a ‘close’ approximation of P within the class of dis-

tributions that can be factorized as a product of independent

marginals, i.e.

Q(Y ) =
∏

i

Q(Yi) (13)

This approximation is computationally attractive but is

very likely to lose a lot of information about the origi-

nal distribution P (Y |D). Nevertheless, the result of MAP

and MPM (Maximum Posterior Marginal) inference will

be quite similar when the entropy of P (Y |D) is low.

Broadly speaking, in the case of the pairwise CRF we de-

scribed previously, good approximations of P (Y |D) are

obtained when the unary potentials are ‘peaky’ (i.e. low en-

tropy). The quality of the approximation betweenQ(Y ) and

P (Y |D) is usually measured using KL(Q(Y )||P (Y |D)),
where KL is the Kullback-Leibler divergence. Taking

the fixed point solution of the Kullback-Leibler divergence

[26], we obtain the following update for the label li in the

marginal of random variable xi:

Qt
i(li) =

1

Bi

e−Mi(li) (14)

Mi(li) = ψu(li) +
∑

j∈Ni

∑

lj∈L

Qt−1
j ψp(li, lj) (15)

Bi =
∑

li∈L

e−Mi(li) (16)

The underlying coordinate ascent procedure results in

a better approximation of P by Q for each iteration, but

also guarantees convergence. Note that popular techniques

like Belief Propagation are not guaranteed to converge when

performing inference over graphs. At this stage, it is crucial

to note that the complexity of evaluating the updatedQt(Y )
is O(|Y ||L|(|N ||L| + 1)). The quadratic complexity on L
is not of a practical concern for high-speed inference when

L is small. Nevertheless, this makes the (computationally

attractive) mean-field framework too slow when this num-

ber grows large. As mentioned before, the MPM and MAP

solutions are similar in the pairwise CRF (Eq. (3)) when the

entropy of the unary is low. We go one step further in the

approximation and explicitly assume that Q also has low

entropy and approximate it with a Dirac δ function. This

corresponds to setting Qi = δ(li − argmaxlj Qj). We can

now rewrite (15) as follows

Mi(li) = ψu(li) +
∑

j∈Ni

ψp(li, argmax
lj

Qj) (17)

Since Qt
i (14) now follows a Dirac δ function, comput-

ing the normalization function Bi (16) is not required any-

more. The compute complexity of updating Qt(Y ) is now

O(|Y ||N |(1+|N |)). Roughly speaking, this corresponds to

a reduction of complexity along the lines of O(|L|2/|N |).
Note that |N | is small for many problems (e.g. stereo

depth estimation), and that in most these problems |L| >
|N | (e.g. |L| is in the hundreds and |N | = 4 when estimat-

ing disparities).

3.4. Computational Analysis

The following is a computational analysis of the pro-

posed method for (discrete) disparity estimation. We as-

sume an input image with |Y | pixels, and L possible labels.

Typical values for disparity estimation are |Y | = 1280 ×
1024 and L = 512. The hyperplanes W are trained to have

maximum 4 non-zero elements for each code. Each pixel i
is associated with a patch Pi of size |Pi| = 11× 11. Taking

the sign of the dot product between Pi and W remaps Pi

into k = 32 binary codes. The computation of the binary

codes b is independent of the window size |P | and it in-

volves 4 multiplications and sums for each hyperplane. This

corresponds to a per-pixel complexity ofO(4 k) to compute

a hash code. We initialize the data term ψi by evaluating

only a very limited set of 32 random label hypotheses. The

distances are computed using the Hamming distance in the

new space and this can be efficiently implemented in O(1)
making use of the popc() function that is implemented in

most of the latest GPU architectures. The initialization step

then has a per-pixel complexity O(4 k). Regarding the in-

ference, we only use the immediate N = 3×3 neighbors of

each pixel in the pairwise potential. The marginal of each

pixel can be updated in parallel without waiting for sequen-

tial propagation steps like in [4, 16]. In practice, we use

4 steps of the proposed inference, resulting in a per-pixel

complexity of O(4 |N |(1 + |N |)). Note that in contrast to

other approaches, the proposed algorithm is independent of

the number of labels L and the patch size |Pi|. The rela-

tively low computational complexity and fully parallel na-

ture of all the components of the proposed method make

it particularly suitable for high-speed applications on low

compute devices. We tested the HashMatch framework on

an NVIDIA Titan X GPU, with an overall running time of

890µs per frame. We also implemented the algorithm on a

NVIDIA Tegra TX1 with an overall running time of 5ms,
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Figure 1. Qualitative comparisons of depth maps generated with

state of the art methods. HashMatch shows the most complete

results in complex scenes.

which opens up the possibility of high speed applications

on mobile platforms.

4. Results

We evaluate the HashMatch framework on a diverse set

of computer vision tasks. For each problem, we explicitly

describe the form of the unary potential that is used. We

first show how our method can handle continuous labeling

problems such as disparity estimation. Further, we evaluate

the proposed hashing scheme on retrieval and feature ap-

proximation tasks. Finally, we assess the quality of the pro-

posed inference for background subtraction. Note that for

the tasks where the proposed inference is used, the number

of iterations is constant and set to 4.

4.1. Depth Estimation

In this section, we focus on depth estimation from stereo

images under active illumination [15, 16]. For our exper-

iments, we use a hardware setup similar to [16], i.e. two

IR cameras in a stereo configuration as well as a Kinect V1

DOE. When the IR images IL and IR are calibrated and

rectified, each pixel p = (u, v) in IL has a corresponding

pixel q = (u + l, v) in IR that lies on the same scanline

v. We apply HashMatch to retrieve the continuous disparity

l ∈ R. The disparity is then remapped in the depth domain

via Z = bf
l

, where b is the baseline of the system, f the

focal length of the camera and l is the inferred disparity.

In this section, the data term ψu(li) is computed accord-

ing to Eq. (4). We train the hyperplanes W by acquiring

10000 images and extracting 11× 11 image patches x. We

set the task y = x. We use k = 32 hyperplanes W with

maximum 4 non-zero elements for each column.

We compare HashMatch with state of the art methods,

including both qualitative and quantitative evaluations. We

set the exposure time of the cameras very low (2ms) in or-

der to perform evaluations on real data captured at 500Hz.

Figure 2. Example of high quality depthmap and point clouds gen-

erated with HashMatch. Notice the level of details and the absence

of quantization and outliers.

This data has a significatively lower signal to noise ratio

(SNR) compared to data captured at 30Hz. In Fig. 1 we

show qualitative results generated with HashMatch, Patch-

Match Stereo [4] and UltraStereo (US) [16]. Notice how

the baseline methods suffer from the relatively low SNR

whereas HashMatch is able to predict complete and smooth

depthmaps. We also generate results using our unary term

and the PatchMatch inference [1] (HashMatch+PM in Fig.

1). The proposed parallel inference produces results very

close to those generated with the PatchMatch inference, but

is 2X faster compared with the very optimized implemen-

tation described in [16]. In Fig. 2 we show a high quality

depthmap and pointcloud generated with HashMatch, no-

tice the level of details that are captured by our method.

To quantitatively assess the proposed framework, we fol-

low the procedure presented in [15] and acquired images of

a flat wall at multiple known distances, varying between 500
and 3500 cm. For each set distance, 100 frames are recorded

from which we estimate the average depth bias (defined as

the average error), and depth jitter (defined as the standard

deviation). We compare with Kinect V1, RealSense R200,

PatchMatch Stereo [4], HyperDepth [15] and UltraStereo

[16] as baseline methods; results are reported in Fig. 3.

HashMatch outperforms most of the competitors and is on

par with more involved methods such as [15].

Finally, we compare the quality of our hashing scheme

with other state of the art methods such as: ITQ [19], SBE

[37], CBE [56], Binary Autoencoders (BA) [8] and Ultra-

Stereo [16]. We used the synthetic dataset from [16] with

perfect groundtruth disparities and perform the (discrete)

nearest neighbor search over the pixel disparities. We de-

fined the accuracy as the percentage of pixels for which the

estimated disparity is below 1 pixel; results are reported in
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Figure 3. Quantitative comparisons with state of the art methods.

HashMatch achieves the lowest error using the lowest compute.

Tab. 1. Although our HashMatch descriptor uses only 4
non-zero elements per hyperplane, the results are on par

with dense hashing schemes such as BA. We also outper-

form other sparse hashing schemes such as CBE and SBE,

proving the quality of the proposed representation. It is in-

teresting to note that besides providing smooth results, us-

ing the proposed inference raises the precision reported in

Tab. 1 from 77% to 96%.

HashMatch ITQ SBE CBE LSH BA US

77% 76% 68% 70% 58% 77% 73%

Table 1. Hashing Schemes Comparisons. We compare our method

with other popular hashing schemes and binary representations:

ITQ [19], SBE [37], CBE [56], Binary Autoencoders [8] and Ul-

traStereo (US) [16]. HashMatch uses only 4 non zero elements

and is on par with dense methods like BA.

4.2. Nearest Neighbor Retrieval

In this section, we evaluate HashMatch on a nearest

neighbor retrieval task. We assume we have a two set of fea-

ture vectors, query and base. For each sample in the query

set, the goal is to find the nearest neighbor in the base set.

This is a typical case for correspondence search problems

between two or more image. The goal of this section is to

evaluate only our hashing scheme and compare it with other

state of the art methods, therefore no parallel inference is re-

quired. The data term ψu(li) is computed according to Eq.

(4). Notice that for this experiment the smoothness term is

not needed, thus we dropped it. We use the GIST1M dataset

[24], which is composed of three disjoint sets: train, query

and base. Each descriptor x has 960 dimensions, and we

minimize Eq. (6) setting the task Y = X. We trained data

Figure 4. Recall@R curves on the GIST1M dataset.

dependent hashing schemes using the training set and test

on the other sets. We compute the Recall@R, defined as the

recall for R retrievals.

We compare our method with the following state of the

art hashing techniques: ITQ [19], SBE [37], CBE [56],

LSH [23], and SKLSH [36]. For each method we trained

16, 32, 64, 128 codes, perform the binary embedding ac-

cording to Eq. (1) and compute the nearest neighbor search

using the Hamming distance. We do not perform any data

preprocessing such as normalization steps or augmentation.

For HashMatch and SBE we set the sparsity parameter such

that we have 10% of non-zero elements.

We report the Recall@R curves in Fig. 4. For small

number of codes, HashMatch greatly outperforms all the

competitors, including dense ones such as ITQ. When larger

codes are used (i.e. 128), this gap reduces but HashMatch

still provides for the largest area under curve (AUC).

4.3. Feature Approximation

In this experiment we consider the problem of approxi-

mating complex feature descriptors given a set of 11 × 11
image patches x. For this particular application we consider

SIFT descriptors [31] s ∈ R128. The goal is to minimize

Eq. (6) where the task Y = S is the set of SIFT descrip-

tors. In other words, we apply HashMatch to a regression

problem, where the target continuous function is computed

from handcrafted features. In general we could apply the

same framework to learn more sophisticated descriptors.

We consider the EPFL wide-baseline stereo data [46],

where we trained HashMatch on those sequences with no

groundtruth available. Training data is generated by ex-

tracting SIFT descriptors in an unsupervised way. At test

time we detect corners and compute SIFT and HashMatch
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Figure 5. Qualitative Experiments for feature approximation (see

Sec. 4.3).

descriptors, respectively. We match the descriptors based

on the closest ℓ2 distance and we filter outliers by impos-

ing the epipolar constraint between the two images. In Fig.

5 we report qualitative results: in green we depict correct

matches, in red those matches with distances greater than 1
cm in the provided groundtruth. SIFT achieves an average

end-point error of 0.8 cm, whereas HashMatch gets very

close with 1.2 cm. If we consider as inliers the percentage

of retrieved matches with error < 1cm, HashMatch reports

an overall accuracy of 90%, whereas SIFT retrieves 81%
corrected matches. On average, SIFT is able to retrieve 350
good matches per image, HashMatch 150. While the num-

ber of matches are fewer in case of HashMatch we get more

reliable matches. In practice, the order of feature matches

we obtain from HashMatch would cater to most applica-

tions that use SIFT, and with much less compute making

HashMatch very powerful in such scenarios.

4.4. Background Subtraction

In this last experiment, we evaluate the proposed paral-

lel inference on a background segmentation task with static

cameras. Typical applications are surveillances and peo-

ple tracking scenarios. We consider natural (indoor) rooms.

Assuming a clean background shot is available (RGB and

depth), we want to detect any new object entering the scene.

The goal of this application is to evaluate the proposed

inference and compare it with well established approaches

like belief propagation (BP) [45], tree-reweighted message

passing (TRW) [50, 27], mean field [49] and patch match

[1]. Assuming that RGB and depth information is available,

we use a unary potential of the form ψu(li) = ψrgb(li) +
ψdepth(li). The two terms are simple differences in the

HSV space and a logistic function in the depth domain as

defined in [35] and [14]. Note that the unary potential is

shared amongst all the baselines methods and that the pair-

wise term is the standard Potts model.

We collected 100 frames from different subjects and ob-

jects, and manually labeled the foreground from the images

to obtain the ground truth. We report the average energy ob-

tained by the proposed inference and the baselines in Table

Figure 6. Qualitative results of background subtraction. The fore-

ground segmentation corresponds to the cyan region, which is

overlaid on the gray-scale version of the color image. Note that

we achieve results that are comparable with more computationally

demanding approaches, but orders of magnitude faster.

4.4. It is interesting to note that although much less compu-

tationally demanding, the proposed inference achieves final

energies that are very similar to that obtained by the base-

lines. Some qualitative results are shown in Fig. 6.

Inference algorithm Average energy

Only Unaries 5.8 ∗ 10
5

BP [45] 2.9 ∗ 10
5

TRW [50, 27] 2.85 ∗ 10
5

Mean Field [49] 2.9 ∗ 10
5

PatchMatch [1] 3.0 ∗ 10
5

Proposed inference 2.9 ∗ 10
5

Table 2. Quantitative evaluation of the proposed inference on a

background subtraction task. We compare our method against

established inference techniques. We report the average energy

obtained by each approach. Note how all the propagation ap-

proaches significantly reduce the energy obtained by the initial so-

lution (first row). Also note that although the proposed inference

is less computationally demanding than the baselines, it reaches

very comparable energy levels.

5. Conclusion

In this paper we presented HashMatch, an efficient

framework tailored for parallel compute architectures.

Through extensive experiments on a diverse set of computer

vision tasks, we demonstrated that although HashMatch op-

erates at extreme speeds, it makes little compromise in pre-

cision compared to more compute intensive approaches. All

these characteristics make HashMatch an appealing frame-

work for low compute mobile platforms and for products

required to operate at very high speeds.
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