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Figure 1. We recover (b) hallucinated neural radiance fields (Ha-NeRF) from (a) a group of tourism images with variable appearance and
complex occlusions. Our method can consistently render (c) free-occlusion views which hallucinate different appearances.

Abstract

Neural Radiance Fields (NeRF) has recently gained pop-
ularity for its impressive novel view synthesis ability. This
paper studies the problem of hallucinated NeRF: i.e., re-
covering a realistic NeRF at a different time of day from
a group of tourism images. Existing solutions adopt NeRF
with a controllable appearance embedding to render novel
views under various conditions, but they cannot render
view-consistent images with an unseen appearance. To
solve this problem, we present an end-to-end framework
for constructing a hallucinated NeRF, dubbed as Ha-NeRF.
Specifically, we propose an appearance hallucination mod-
ule to handle time-varying appearances and transfer them
to novel views. Considering the complex occlusions of
tourism images, we introduce an anti-occlusion module to
decompose the static subjects for visibility accurately. Ex-
perimental results on synthetic data and real tourism photo
collections demonstrate that our method can hallucinate the
desired appearances and render occlusion-free images from
different views. The project and supplementary materials
are available at https://rover-xingyu.github.io/Ha-NeRF/.

*Work done during an internship at Tencent AI Lab.
†Corresponding Author.

1. Introduction

In recent years, synthesizing photo-realistic novel views
of a scene has become a research hotspot along with the
rapid development of neural rendering technologies. Imag-
ine you want to visit the Brandenburg Gate in Berlin and en-
joy the landscapes at different times and weathers, but you
cannot because of the coronavirus pandemic. For this hal-
lucinated experience to be as engaging as possible, photo-
realistic images from different views that can change with
the weather, time, and other factors are necessary.

To achieve this, Neural Radiance Fields (NeRF) [33] and
its following methods [25,40,58] have shown a remarkable
capacity to recover the 3D geometry and appearance, giv-
ing the user an immersive feeling of physically being there.
However, one significant drawback of NeRF is that they re-
quire a group of images without variable illumination and
moving objects, i.e., the radiance of the scene is constant
and visible for each view. Unfortunately, most images of
tourist landmarks are internet photos captured at different
times and occluded by various objects. Most NeRF-based
methods would integrate variable appearances and transient
occluders into the 3D volume when they occur, which dis-
turbs the real scene in the volume. How to synthesize
the occlusion-free views from images with variable appear-
ances and occluders remains to be solved.
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Martin-Brualla et al. [28] attempt to tackle the aforemen-
tioned problem by proposing a NeRF in the Wild method
(NeRF-W). They optimize an appearance embedding for
each input image to address variable appearances and use
a transient volume to decompose static components and
their occlusion. Compared to NeRF, NeRF-W takes a step
towards recovering a realistic world from tourism images
with variable appearances and occluders. However, NeRF-
W implements a controllable appearance by the optimized
embeddings from train samples, making it need to optimize
the embeddings when given a new image and can not hal-
lucinate an appearance from other datasets. Furthermore,
NeRF-W tries to optimize a transient volume for each input
image with a transient embedding as input, which is highly
ill-posed due to the randomness of transient occluders. And
this leads to the inaccurate decomposition of the scene and
further causes the entanglement of appearances and occlu-
sion, e.g., results in the transient volume to remember the
sunset glow.

To address these limitations, we present a hallucinated
NeRF (Ha-NeRF) framework that can hallucinate the real-
istic radiance field from unconstrained tourist images with
variable appearances and occluders, as shown in Fig. 1.
For appearance hallucination, we propose a CNN-based ap-
pearance encoder and a view-consistent appearance loss
to transfer consistent photometric appearance in different
views. This design gives our method the flexibility to trans-
fer the appearance of unlearned images. For anti-occlusion,
we utilize an MLP to learn an image-dependent 2D visibil-
ity mask with an anti-occlusion loss that can automatically
separate the static components with high accuracy during
training. Experiments on several landmarks confirm the su-
perior of the proposed method in terms of appearance hal-
lucination and anti-occlusion.

Our contributions can be summarized as follows:

1. The Ha-NeRF is proposed to recover the appearance
hallucination radiance fields from a group of images
with variable appearances and occluders.

2. An appearance hallucination module is developed to
transfer the view-consistent appearance to novel views.

3. An anti-occlusion module is modeled image-
dependently to perceive the ray visibility.

2. Related Work
Novel View Synthesis. Rendering photo-realistic images
is at the heart of computer vision and has been the focus
of decades of research. Traditionally, view synthesis could
be considered as an image-based warping task combined
with geometry structure [49], such as implicit geometry
from dense images [4, 10, 15, 24, 29] and explicit geome-
try [5, 11, 17, 18, 36]. Recent works have used a set of un-

constrained photo collections to explicitly infer the light and
reflectance of the objects in the scene [22,48]. Others make
use of semantic information to restore transient objects [39].

With the advancement of deep learning, many ap-
proaches have applied deep learning techniques to improve
the performance of view synthesis. Researchers try to com-
bine convolutional neural networks with scene geometry to
predict depth or planar homography for novel view synthe-
sis [7, 19, 26, 35, 56, 61]. Inspired by the layered depth im-
ages [47], recent works exploit explicit scene representa-
tion (e.g., multi-plane images, multiple sphere images) and
render novel views using alpha-compositing for novel view
synthesis [3, 12, 32, 51, 55, 60]. More recently, researchers
have focused on the challenging problem of learning im-
plicit functions (e.g., encoded features, NeRF) to represent
scenes for novel view synthesis [33, 44, 45, 58].
Neural Rendering. Neural rendering [53] is closely re-
lated and combines ideas from classical computer graph-
ics and deep learning to create algorithms for synthesiz-
ing image and reconstruction geometry from real-world ob-
servations. Several works present different ways to inject
learning components into the rendering pipeline, such as
learned latent textures [54], point clouds [1, 9], occupancy
fields [31], signed distance functions [38]. Based on the
image translation network, Meshry et al. [30] learned a neu-
ral re-rendering network conditioned on a learned latent ap-
pearance embedding module to recover point cloud for view
synthesis. However, the utilization of an image translation
network leads to temporal artifacts visible under camera
motion.

With the development of volume rendering [27, 33, 50],
it is easy to render realistic and consistent views. Milden-
hall et al. [33] propose Neural Radiance Fields (NeRF)
and use a multi-layer perceptron (MLP) to restore a radi-
ance field. Many following works try to extend NeRF to
the dynamic scene [6, 25, 40, 58], fast training and render-
ing [8, 13, 43, 57] and scene edit [2, 28, 34, 59]. Martin-
Brualla et al. [28] propose NeRF in the wild (NeRF-W) to
optimize the appearance and tackle occlusion via static vol-
ume and dynamic volume respectively, but they failed in
some scenes. Their dynamic volume is often used to de-
scribe the dramatic changes in appearance, such as view-
dependent lighting. Besides, while NeRF-W implements a
controllable appearance, it is hard to hallucinate consistent
views at an appearance that has never been seen.
Appearance Transfer. A given scene can take on dramat-
ically diverse appearances in different weather conditions
and at different times. Grag et al. [14] propose that the
dimensionality of scene appearance in tourist images cap-
tured at the same position is relatively low, except for out-
liers like transient objects. One can recover appearance for
a photo collection by estimating coherent albedos across the
collection [22], isolating surface albedo and scene illumina-
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tion from the shape recovery [21], retrieving the sun’s loca-
tion through timestamps and geolocation [16], or assuming
a fixed view [52]. However, these methods assume simple
lighting models that do not apply to nighttime scene appear-
ance. Radenovic et al. [42] restore distinct day and night re-
constructions, but are unable to achieve a smooth gradation
of appearance from day to night. Park et al. [37] propose
an efficient technique to optimize the appearance of a col-
lection of images depicting a common scene. Meshry [30]
uses a data-driven implicit representation of appearance that
is learned from the input image distribution, while Martin-
Brualla et al. [28] extend the data-driven method to NeRF
and optimize appearance latent code for each view for ap-
pearance controllable. In contrast, the proposed method
tries to learn the appearance features that are decomposed
from views, which means it could consistently hallucinate
novel views at an unlearnt appearance.

3. Preliminary
We first introduce Neural Radiance Fields (NeRF) [33]

that Ha-NeRF extends. NeRF represents a scene using a
continuous volumetric function Fθ that is modeled as a
multilayer perceptron (MLP). It takes a 3D location x =
(x, y, z) and 2D viewing direction d = (α, β) as input and
output an emitted color c = (r, g, b) and volume density σ
as:

(σ, z) = Fθ1(γx(x)),

c = Fθ2(γd(d), z),
(1)

where θ = (θ1, θ2) are the MLP parameters, γx(·) and
γd(·) are the positional encoding functions that are applied
to each of the values in x and d respectively. To render
the color of a ray passing through the scene, NeRF ap-
proximates the volume rendering integral using numerical
quadrature. Let r(t) = o + td be the ray emitted from the
camera center o through a given pixel on the image plane.
The approximation of the color Ĉ(r) of the pixel is:

Ĉ(r) =

K∑
k=1

Tk(1− exp(−σkδk))ck,

Tk = exp(−
k−1∑
l=1

σlδl),

(2)

where ck and σk are the color and density at point r(tk),
δk = tk+1 − tk is the distance between two quadra-
ture points. Stratified sampling is used to select quadra-
ture points {tk}Kk=1 between the near and far planes of the
camera. Intuitively, alpha compositing with alpha values
1 − exp(−σkδk) can be interpreted as the probability of a
ray terminating at the location r(tk), and function Tk corre-
sponds to the accumulated transmittance along the ray from
the near plane to r(tk).

Render

MLP

MLP

MLP

CNN

occlusion loss

Figure 2. An overview of the Ha-NeRF architecture. Given an im-
age Ii, we use a CNN to encode it into an appearance latent vector
`ai . We synthesize images by sampling location x and viewing di-
rection d of camera rays, feeding them with `ai into MLPs to pro-
duce a color c and volume density σ and rendering a reconstructed
image Îi. Given an image-dependent transient embedding `τi , we
use an MLP to map pixel location p to a visible possibilityMi,
so that we can disentangle static and transient phenomena of the
images with an occlusion loss.

To optimize the MLP parameters, NeRF minimizes the
sum of squared errors between an image collection {Ii}Ni=1

and the corresponding rendered output. Each image Ii is
registered with its intrinsic and extrinsic camera parameters
which can be estimated using structure-from-motion algo-
rithms. NeRF precomputes the set of camera rays {rij} at
pixel j from image Ii with each ray rij(t) = oi + tdij
passing through the 3D location oi with direction dij . All
parameters are optimized by minimizing the following loss:

L =
∑
ij

∥∥∥C(rij)− Ĉ(rij)
∥∥∥2
2
, (3)

where C (rij) is the observed color of ray j in image Ii.

4. Method

Given a photo collection of a scene with varying ap-
pearances and transient occluders, we aim to reconstruct
the scene that can be hallucinated from a new shot while
handling the occlusion. That’s to say that we can modify
the appearance of the whole 3D scene according to a new
view captured at a different photometric condition. More
specifically, taking a photo in the wild as input, we recon-
struct an appearance-independent NeRF modulated by an
appearance embedding encoded by a convolutional neural
network in Sec. 4.1. To address the transient occluders in
the photo, we propose an occlusion handling module to sep-
arate the static scene automatically in Sec. 4.2. Fig. 2 illus-
trates the overview of the proposed architecture. Next, we
subsequently elaborate on each module.
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Figure 3. Illustration of view-consistent loss. Given an example
image Ii, we use a CNN to encode it into an appearance latent
vector `ai . We sample camera rays in another view to render the
hallucinated image Iir together with `ai . We encourage that the re-
constructed appearance vector `ar encoded from hallucinated im-
age should be the same as `ai , since it is a global representation
across different views.

4.1. View-consistent Hallucination

To achieve the hallucination of a 3D scene according to a
new shot from the input with varying appearances, the core
problems are how to disentangle the scene geometry from
appearances and how to transfer the new appearance to the
reconstructed scene. NeRF-W [28] tries to use an optimized
appearance embedding to explain the image-dependent ap-
pearances in the input. However, this embedding needs to
be optimized during training, making it need to optimize
the embeddings for hallucinating the scene from a new shot
beyond the training samples and can not hallucinate an ap-
pearance from other datasets.

Therefore, we propose to learn the disentangled appear-
ance representations using a convolutional neural network
based encoder Eφ, of which parameters φ account for the
varying lighting and photometric postprocessing in the in-
put. Eφ encodes each image Ii into an appearance la-
tent vector `ai . The radiance c in Eq. 1 is extended to an
appearance-dependent radiance c`

a
i , which introduces a de-

pendency on appearance latent vector `ai to emitted color:

c`
a
i = Fθ2 (γd(d), z, `

a
i ) , where `ai = Eφ(Ii). (4)

The parameters φ of appearance encoder Eφ are learned
alongside parameters θ of radiance field Fθ. This appear-
ance encoder enables our method to have the flexibility to
use the appearance of images beyond the training set.

However, the problem that disentangles the appearance
from viewing direction with unpaired images is inherently
ill-posed and requires additional constraints. Inspired by re-
cent works [20, 23, 62] that exploit latent regression loss to
encourage invertible mapping between image space and la-
tent space, we propose a view-consistent loss Lv to achieve
the disentanglement of appearance and view by taking an
appearance vector `(a)i from the the appearance encoder Eφ
and attempt to reconstruct it in different views, which is for-
mulated as:

Lv = ‖Eφ(Iri )− `ai ‖1 , (5)

where Iri is the rendered image whose view is randomly
generated and appearance is conditioned on the image Ii
as shown in Fig. 3. Here we assume that the reconstructed
appearance vector Eφ(Iri ) should be the same as the orig-
inal appearance vector `ai , since the appearance vector is a
global representation across different views. Owing to the
view-consistent loss, we can perform view-consistent ap-
pearance rendering, given the same appearance vector as
input. In addition, we prevent encoding the image geome-
try content into the appearance vector with the help of view-
consistent loss, which encodes the render images from dif-
ferent views (also content) to the same vector when condi-
tioning the volume on the same vector.

To improve efficiency, we sample a grid of rays and com-
bine them as the image Iri instead of rendering a whole im-
age during training. [46]. This is based on the assumption
that the global appearance vector of an image will remain
unchanged after sampling using a random grid.

4.2. Occlusion Handling

Instead of using a 3D transient field to reconstruct the
transient phenomena which is only observed in an individ-
ual image as in [28], we eliminate the transient phenomena
using an image-dependent 2D visibility map. This simplifi-
cation makes our method has a more accurate segmentation
between the static scene and transient objects. To model
the map, we employ an implicit continuous function Fψ
which maps a 2D pixel location p = (u, v) and an image-
dependent transient embedding `τi to a visible possibility
M:

Mij = Fψ (pij , `
τ
i ) . (6)

We train the visibility map, which indicates the visibility of
rays originated from the static scene, to disentangle static
and transient phenomena of the images in an unsupervised
manner with an occlusion loss Lo:

Lo =Mij

∥∥∥C (rij)− Ĉ (rij)
∥∥∥2
2
+ λo(1−Mij)

2. (7)

The first term is the reconstruction error considering pixel
visibility between the rendered and ground truth colors.
Larger values of visible possibilityM enhance the impor-
tance assigned to a pixel, under the assumption that it be-
longs to the static phenomena. The first term is balanced by
the second, which corresponds to a regularizer with a mul-
tiplier λo on invisible probability, and this discourages the
model from turning a blind eye to static phenomena.

4.3. Optimization

To achieve Ha-NeRF, we combine the aforementioned
constraints and jointly train the parameters (θ, φ, ψ) and the
per-image transient embedding {`τi }

N
i=1 to optimize the full

objective:
L = λ

∑
i

Lv +
∑
ij

Lo. (8)
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Figure 4. Qualitative results of experiments on constructed dataset. Ha-NeRF is able to encode the appearances and transfer them to novel
views photo realistically (e.g., blue sky and sunshine in “Sacre Coeur”, plants in “Brandenburg Gate”, light reflection in “Trevi Fountain”).
Besides, Ha-NeRF removes transient occlusions to render a consistent 3D scene geometry (e.g., square and pillars in “Brandenburg Gate”).

Brandenburg Gate Sacre Coeur Trevi Fountain

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [33] 18.90 .8159 .2316 15.60 .7155 .2916 16.14 .6007 .3662
NeRF-W [28]* 24.17 .8905 .1670 19.20 .8076 .1915 18.97 .6984 .2652
Ha-NeRF(A) 22.93 .8517 .1727 19.57 .7864 .1839 19.89 .6798 .2377
Ha-NeRF(T) 19.84 .8368 .1835 16.66 .7657 .2267 15.92 .6186 .2830
Ha-NeRF 24.04 .8773 .1391 20.02 .8012 .1710 20.18 .6908 .2225

* NeRF-W optimizes appearance vectors on the left half of each test image while Ha-NeRF does not.
Table 1. Quantitative results of experiments on our constructed dataset. Ha-NeRF achieves competitive PSNR and SSIM while outper-
forming the others on LPIPS across all datasets, even with the unfair experiment settings when compared with NeRF-W.

5. Experiments

5.1. Implementation Details

Our implementation of NeRF and NeRF-W follows [41].
The static neural radiance field Fθ consists of 8 fully-
connected layers with 256 channels followed by ReLU ac-
tivations to generate σ and one additional 128 channels
fully-connected layer with sigmoid activation to output the
appearance-dependent RGB color c. The appearance en-
coder Eφ consists of 5 convolution layers followed by an
adaptive average pooling and a fully-connected layer to get
the appearance vector `(a)i with 48 dimensions. The image-
dependent 2D visibility mask Fψ is modeled by 5 fully-
connected layers of 256 channels followed by sigmoid acti-

vation to generate the visible possibilityM conditioned on
transient embedding `τi with 128 dimensions. We set λ to
1× 10−3 and λo to 6× 10−3.

To evaluate the performance of Ha-NeRF in the wild,
We constructed three datasets called “Brandenburg Gate”,
“Sacre Coeur” and “Trevi Fountain” using the Phototourism
dataset, which consists of internet photo collections of cul-
tural landmarks. We downsample all the images by 2 times
during training.

5.2. Evaluation

Baselines. We evaluate our proposed method against NeRF,
NeRF-W, and two ablations of Ha-NeRF: Ha-NeRF(A) and
Ha-NeRF(T). Ha-NeRF(A) (appearance) builds upon our
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Figure 5. Hallucination in the “Brandenburg Gate” dataset with the global color shifts, such as weather, season and postprocessing filters.
There are the images whose viewing direction is the same as the leftmost column content images, and the appearance is conditioned on the
top line example appearance images.

full model by eliminating the visibility network Fφ, while
Ha-NeRF(T) (transient) removes the appearance encoder
Eψ from the full model. Ha-NeRF is the complete model
of our method.
Comparisons. We evaluate our method and baselines on
the task of novel view synthesis. All methods use the same
set of input views to train the parameters and embedding
for each scene except NeRF-W, which uses the left half of
each test image to optimize the appearance embedding for
the test set since they can not hallucinate new appearance
without optimizing during training. We present rendered
images for visual inspection and report quantitative results
based on PSNR, SSIM, LPIPS.

Fig. 4 shows qualitative results for all models and base-
lines on a subset of scenes. NeRF suffers from ghosting
artifacts and global color shifts. NeRF-W produces more
accurate 3D reconstructions and is able to model varying
photometric effects. However, it still suffers from blur ar-
tifacts like the fog effect around the peristele of “Branden-
burg Gate”. This fog effect is the consequence of NeRF-W’s
attempt to estimate a 3D transient field to reconstruct the
transient phenomena, while the transient objects are only
observed in a single image. At the same time, renderings
from NeRF-W also tend to exhibit different appearances
compared to the ground truth, such as the sunshine and the
blue sky in“Sacre Coeur” and the light reflection in “Trevi
Fountain”.

Ha-NeRF(A) has a more consistent appearance, such as
the blue sky at the top of “Sacre Coeur”. However, it is un-
able to reconstruct high-frequency details due to the occlu-
sion. In contrast, Ha-NeRF(T) is able to reconstruct struc-
tures with occlusion such as the square of “Brandenburg
Gate”, but is unable to model varying photometric effects.
Ha-NeRF has the benefits of both ablations and thereby pro-
duces better appearance and anti-occlusion renderings.

Quantitative results are summarized in Table 1. Optimiz-
ing NeRF on photo collections in the wild leads to partic-
ularly poor results that cannot compete with NeRF-W. In
contrast, Ha-NeRF achieves competitive PSNR and SSIM
compared to NeRF-W while outperforming the others on
LPIPS across all datasets. Actually, this comparison is un-
fair to us. To transfer the appearance from test images,
NeRF-W needs to optimize the appearance vectors on a
subset of the test images during training. While Ha-NeRF
does not use any test images during training. When test-
ing, Ha-NeRF can directly encode the image appearance by
a learned encoder. Despite this, our method still can pro-
duce competitive results compared with NeRF-W. More-
over, NeRF-W exhibits view inconsistency. As the camera
moves, renderings conditioned on the same appearance em-
bedding appear to have an inconsistent appearance, which
can not be reflected by current metrics. And we put the
results into the supplemental material for the consistency
comparison of NeRF-W with Ha-NeRF.
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Figure 6. Hallucination in the “Trevi Fountain” dataset with high-frequency information of appearance, such as sunshine and colored
light reflection. There are the images whose viewing direction is the same as the leftmost column content images, and the appearance is
conditioned on the top line example appearance images.
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Figure 7. Images rendered from a fixed camera position with interpolated appearance between appearance 1 and appearance 2.

Appearance Hallucination. By conditioning the color on
the latent vector `(a)i , we can modify the lighting and ap-
pearance of a rendering without altering the underlying 3D
geometry. In the meantime, encoding appearance with an
encoder Eφ allows our framework to perform example-
guided appearance transfer.

In Fig. 5, we see rendered images produced by Ha-NeRF
using different appearance vectors extracted from example
images. We also show the results of NeRF-W where ap-
pearance vectors are optimized during training. Notice that
Ha-NeRF hallucinates realistic images while NeRF-W suf-
fers from global color shifts compared with the example im-
ages. Moreover, Fig. 6 shows that Ha-NeRF can capture the

high-frequency information of appearance and hallucinate
the sunshine and colored light reflection of the scene.

Ha-NeRF can also interpolate the appearance vectors to
get other hallucinations. In Fig. 7, we present five images
rendered from a fixed camera position, where we interpo-
late the appearance vectors encoded from the leftmost and
rightmost images. Note that the appearance of the rendered
images is smoothly transitioned between the two endpoints
by Ha-NeRF. However, the interpolated results of NeRF-W
completely ignore the sunset glow. Furthermore, we add the
transient field of NeRF-W during its rendering (NeRF-W
w/T), which shows the sunset glow. It reveals that NeRF-W
could not disentangle the variable appearance (sunset glow)
from transient phenomena (people) well.
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Figure 8. Cross dataset hallucination in the “Brandenburg Gate” condition on the example images of “Trevi Fountain”.

Figure 9. Hallucinating appearance from radically different scenes
in different views. (e.g., forest artwork to building)

Cross-Appearance Hallucination. We can perform ap-
pearance transfer by a user-provided example image from
a different dataset. As shown in Fig. 8, we hallucinate
new appearance for “Brandenburg Gate” condition on the
example image of “Trevi Fountain”. We can even trans-
fer appearance from a radically different scene, as shown in
Fig. 9, where there is a large domain gap between appear-
ance images and scenes. We note that NeRF-W inherently
can not hallucinate an appearance from other datasets be-
cause NeRF-W needs to optimize the appearance vectors
on the example images, which must depict the same place.

Occlusion Handling. We eliminate the transient phenom-
ena using an image-dependent 2D visibility map, while
NeRF-W uses a 3D transient field to reconstruct the tran-
sient objects. As illustrated in Fig. 10, our occlusion han-
dling method generates an accurate segmentation between
static scene and transient objects, which allows us to ren-
der occlusion-free images. However, NeRF-W inaccurately
decomposes the scene (e.g., board, people, and fence still
leave on the renderings of NeRF-W) and further entangles
the variable appearance and transient occlusion in the 3D
transient field (e.g., results in the transient volume to re-
member the white cloud of “Brandenburg Gate”).

Limitations. Without exception, the proposed Ha-NeRF
suffers from the noisy camera extrinsic parameters, similar
to most NeRF based approaches. Additionally, the qual-
ity of synthesized images degrades while the input images
are either motion-blurred or defocused. Specific techniques
have to be developed to handle these issues.

Ground-truth NeRF-W Transient NeRF-W Ha-NeRFHa-NeRF Visibility

Figure 10. Anti-occlusion renderings of Ha-NeRF and NeRF-W.
NeRF-W Transient is the renderings of the 3D transient field of
NeRF-W, which tries to reconstruct the transient objects only ob-
served in an individual image. We denote Ha-NeRF Visibility as
our 2D visibility map that learned to disentangle static and tran-
sient phenomena of the images, indicating the visibility of rays
originated from the static scene.

6. Conclusion
NeRF has grown in prominence and has been utilized in

various applications, including the recovery of NeRF from
tourism images. While NeRF-W works effectively with a
train-data optimized appearance embedding, it is hard to
hallucinate novel views consistently at an unlearnt appear-
ance. To overcome this challenging problem, we present
the Ha-NeRF, which can hallucinate the realistic radiance
field under variable appearances and complex occlusions.
Specifically, we propose an appearance hallucination mod-
ule to handle time-varying appearances and transfer them
to novel views. Furthermore, we employ an anti-occlusion
module to learn an image-dependent 2D visibility mask ca-
pable of accurately separating static subjects. Experimen-
tal results using synthetic data and tourism photo collec-
tions demonstrate that our method can render free-occlusion
views and hallucination of the appearance. Codes and mod-
els will be publicly available to the research community to
facilitate reproducible research.
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